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Abstract
We perform non-equilibrium simulations to study heat conduction in two-
dimensional strongly coupled dusty plasmas. Temperature gradients are
established by heating one part of the otherwise equilibrium system to a
higher temperature. Heat conductivity is measured directly from the stationary
temperature profile and heat flux. Particular attention is paid to the influence
of damping effect on the heat conduction. It is found that the heat conductivity
increases with the decrease of the damping rate, while its magnitude agrees
with previous experimental measurement.

PACS numbers: 52.25.Fi, 52.27.Gr, 52.27.Lw

(Some figures in this article are in colour only in the electronic version)

Introduction

Recently, experiments were carried out to study thermal conduction in two-dimensional (2D)
strongly coupled dusty plasmas (SCDPs) [1, 2] in both crystalline and solid/liquid mixture
states, and a thermal conductivity, which is independent of temperature, was found. Although
both these experiments were aimed at studying the heat conduction at an atomic (molecular)
level, neither of them showed many details of microscopic processes during the heat transfer.
Therefore, we conduct here non-equilibrium simulations by using the Brownian dynamics
method [3] to study heat transfer in 2D SCDPs in more detail, serving as a supplement to real
experiment.

Numerical simulation

N = 10 000 particles are simulated in a rectangular area with periodical boundary condition
in the y direction and confining boundary condition in the x direction. (More details of the
simulation and the algorithm may be found in [3].) Particles interact with each other via the
pairwise Yukawa potential: φ(r) = (Q2/r) exp(−r/λD), with Q, r and λD being the particle
charge, interparticle distance and screening length, respectively. The strong-coupling strength
is given by � = Q2/(akBT ), and the screening parameter by κ = a/λD , where a = (πn)−1/2

is the 2D Wigner–Seitz radius with n being the areal number density and kBT being the

1751-8113/09/214025+05$30.00 © 2009 IOP Publishing Ltd Printed in the UK 1

http://dx.doi.org/10.1088/1751-8113/42/21/214025
http://stacks.iop.org/JPhysA/42/214025


J. Phys. A: Math. Theor. 42 (2009) 214025 L-J Hou and A Piel

system temperature. In addition, the damping coefficient γ is needed to fully characterize
the dynamics of the system. To simplify later discussion, we also introduce here the nominal
plasma frequency ω0 = [2Q2/(ma3)]1/2, where m is the mass of a particle. In the simulation,
the screening parameter is kept constant at κ = 1, as it is the most typical value found in
an experiment, while � and γ are varied to realize different equilibrium states and different
damping rates.

Our simulation is directly mimicking recent experiments [1, 2], and is different from
the usual method of non-equilibrium simulation for heat conduction [4]. The system is first
brought to an equilibrium with desired temperature (T0) in either liquid or solid state. The
melting point for κ = 1 is at �∗ ≈ 180 [5], and we will denote the corresponding temperature
as T ∗. Then the right-half of the system (x > 0) is heated to a higher temperature (T1)

by applying a Gaussian white noise with desired strength. The evolution of the temperature
profile and also the heat flux are recorded. A steady state is approached after a substantially
long period.

The microscopic heat flux for the ith particle is defined as Ji (t) = viEi +
1
2

∑N
j=1,j� =i rij (Fij · vij ) − ri (Fext · vi ) where Ei = (1/2)

(
mv2

i +
∑N

j=1,j� =i φij

)
+ φext is the

particle energy. The total flux in a region is then a summation of the microscopic flux of all
particles therein divided by its area A, i.e., J(t) = (1/A)

∑
i∈A Ji (t). We are mainly interested

in the x-component of the heat flux Jx . The three terms on the right-hand side of the above
equation correspond to respectively contributions from: (1) the particle migration, which is
believed to be the main mechanism of heat transport in gas and is denoted as Jkx hereafter,
(2) particle interactions, i.e., phonon scattering, which is dominant in solids and is denoted as
Jpx hereafter and (3) the external force. Since the external force acts on only a few rows of
particles around the two confining boundaries, its direct influence on the heat flux is localized.
Neglecting the external contribution will bring it back to the standard one [6, 7].

Analytical model

The heat transfer in our specific case can be described by Fourier’s law: J = −λ∇T

together with energy balance between heat conduction and energy dissipation due to damping:
∇ · (λ∇T ) = 2γ n(T − T0)kB [2], where λ is the heat conductivity. One has

T (x) − T0 = T1 − T0

2
exp

(√
2nγ kB

λ
x

)
, (x < 0);

T (x) − T1 = T0 − T1

2
exp

(
−

√
2nγ kB

λ
x

)
, (x > 0).

(1)

Expressions for the heat flux may be obtained in a straightforward way, and we omit the results
here. Since λ is the only unknown parameter in equation (1), it may be measured by fitting
the stationary temperature profile (STP) to equation (1). It should also be mentioned that
Fourier’s law could break down for low-dimensional crystalline systems [7], largely due to a
slow decay of equilibrium correlations of the heat current and a divergence of the finite-size
conductivity. However, both of them may be avoided in dusty plasmas because of the finite
damping effect. Therefore, we skip this question at this moment, while interested readers may
find more discussions in [7].

Results and discussions

Figure 1(a) shows examples of STPs for different system states and temperature gradients with
γ = 0.05ω0, which is close to the experimental condition of [2]. Symbols are measurements
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Figure 1. Stationary temperature profiles for: (a) γ = 0.05ω0 but different system states and
temperature gradients and (b) T0 = 0.36T ∗ and T1 = 3.6T ∗ but different damping rates. In both
figures, symbols are simulation results while solid lines are fits according to equation (1). For (a)
λ = 0.35ω0kB , and for (b) different λ values (given in the inserted plot) are obtained.

from simulation, while solid lines are analytical fits according to equation (1). These fits
give a constant heat conductivity, λ = (0.35 ± 0.05)ω0kB , or in terms of thermal diffusivity
DT : DT ≈ 22 mm2 s−1 using parameters from [2]. This value is between the experimental
measurement for the crystalline state (30 mm2 s−1) [1] and that for the solid/liquid mixture
phase (9 mm2 s−1) [2]. Fits for high temperature (e.g. the two upper-most curves) suggest
a slightly smaller λ. Nevertheless, the value is in the range of the error bar for the present
measurement.

Figure 1(b) shows STPs for different damping rates with other parameters fixed. Fits
with equation (1) give a damping-dependent heat conductivity, as is shown in the inserted
plot that λ rises slightly with the decrease of γ . Note that this tendency is contradictory with
that given by the analytical model in [8], which predicts an increase of λ with an increase of
damping rate and was confirmed by their experiment [8]. However, this model is based on
an empirical relation between diffusion and heat conduction coefficients obtained by fitting
simulation results for the three-dimensional (3D) simple liquid without damping, and their
experiment was also performed in a 3D dusty plasma liquid [8]. In contrast, we study
here 2D systems covering both liquid and solid states and/or with a liquid–solid mixture
phase. So the discrepancy could have been caused by the different dimensionality and system
states, as it is known that transport processes depend greatly on these two factors. In our
simulation, the damping effect is taken into account self-consistently and increase of λ with
decrease of γ may be intuitively understood as follows. It has two effects on heat conduction:
direct energy dissipation and indirect suppression of phonon propagation. The first one is
only related to kinetic energy of the system, and had been explicitly taken into account in
equation (1), whereas the second one affects the collective modes and is not included in
equation (1). Therefore, decrease of γ means less damping of phonon propagation, more
efficient heat transfer through phonon scattering and consequently a higher heat conductivity.

Figure 2 shows distributions of Jx, Jpx and Jkx for different system states and temperature
gradients, together with the analytical result derived from equation (1). First, it may be seen
that the kinetic part Jkx and the phonon part Jpx have different weights in different system
states. As expected, Jpx is clearly dominant for the solid state and low temperature liquid
state, while Jkx dominates for the high temperature liquid. The critical temperature where
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Figure 2. Heat flux for different system states and different temperature gradients with γ = 0.05ω0.
Symbols are simulation results, solid lines are fits according to equation (1), using λ = 0.35ω0kB ,
and dashed lines in the two panels on the left are direct linear fits of the heat flux with λ = 1.2ω0kB .

the two parts become equal is about 6T ∗. Second, the heat flux is not symmetrical about
the heating interface. The decay of the heat flux on the low-temperature side is slower and
one needs a smaller slope, consequently a larger λ to fit Jx on this side, indicating a higher
heat conductivity for lower temperature. Third, the agreement between analytical results and
simulation depends closely on system states. One generally observes a better agreement on
the high temperature side and for higher temperature. These features suggest that λ becomes
temperature dependent.

Thus, we have measured the heat conductivity λ of 2D SCDPs by analyzing both the
stationary temperature profile and heat flux in non-equilibrium simulations. It is found that λ

increases with the decrease of the damping rate. In addition, our results also suggest that λ

should be temperature dependent.
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